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1-Aryl-α,β-unsaturated ketones were directly aziridinated, N-unsubstituted, in a one-pot reaction with satisfactory
yields by N,N�-diamino-1,4-diazoniabicyclo[2.2.2]octane dinitrate, a nitrogen–nitrogen ylide precursor, in the
presence of sodium hydride.

Introduction
Aziridines are very important intermediates in organic syn-
thesis 1 and have found widespread use in asymmetric syn-
thesis.2 A variety of methods for the preparation of aziridines
have been developed.3 However, most of the methods produce
N-substituted aziridines, such as N-arenesulfonyl, alkoxycarbo-
nyl, or aryl substituted aziridines. Removal of these substitu-
ents is carried out, in most cases, under harsh conditions. Only
a few methods have been reported for the direct preparation of
N-unsubstituted aziridines until now. The early preparative
routes to N-unsubstituted aziridines involved cycloelimination
processes in which one, sometimes two, bonds were formed
directly to the nitrogen atom. These routes include two intra-
molecular cyclization pathways involving either nucleophilic
displacement by the amine nitrogen on the β-carbon in the
cycloelimination of β-haloamines, β-aminohydrosulfate esters
and their equivalents, or nucleophilic displacement by a β-
carbanionic center (rendered suitably acidic by the presence
of a contiguous carbonyl function) on the amine nitrogen with
concomitant departure of a suitable leaving group (alkoxy, tri-
alkylammonium or halide).3a As an alternative route, both 1,2-
dihalides 4 and α-halo-α,β-unsaturated carbonyl compounds 5

react with ammonia to give N-unsubstituted aziridines. It
was also reported that oximes could be converted into N-
unsubstituted aziridines by treatment with Grignard reagents 6

or by reduction with lithium aluminium hydride in certain
cases.7 3,3-Pentamethyleneoxaziridine can transfer its NH
group to electron-deficient olefins to give N-unsubstituted
aziridines in low yields and with a limited group of substrates.8

3,3-Pentamethylenediaziridine can only transfer its NH group
to the C��C double bond of α,β-unsaturated N,N-disubstituted
amides.9

Nitrogen ylides are another kind of potential NH transfer
agent. Free sulfimides HN��SR2, sulfur–nitrogen ylides, are used
for the direct synthesis of N-unsubstituted aziridines. However,
the yields are unsatisfactory and enaminoketones are obtained
as major byproducts in moderate yields.10 A direct aziridination
of chalcone is needed in order to prepare N-unsubstituted
aziridines in satisfactory yields by an amine imide, which is
formed in situ from N,N-dimethylhydrazine and oxirane
(propene oxide).11 The search for nitrogen transfer agents for
the direct aziridination of olefins to prepare N-unsubstituted
aziridines is currently an attractive field of research.

Results and discussion
An amine imide, as a type of nitrogen–nitrogen ylide, is an
effective NH source for N-unsubstituted aziridination of
electron-deficient olefins. Hydrazinium nitrates are readily pre-

pared from tertiary amines and hydroxylamine-O-sulfonic
acid.12 We rationalize that hydrazinium nitrates could become
amine imides, which could aziridinate olefins with electron-
withdrawing groups, after reaction with bases. We therefore
decided to investigate this aziridination and undertake a survey
of various olefins to ascertain the generality of the reaction.

A hydrazinium nitrate, N,N�-diamino-1,4-diazoniabicyclo-
[2.2.2]octane dinitrate, was prepared from 1,4-diaza-
bicyclo[2.2.2]octane (DABCO) and hydroxylamine-O-sulfonic
acid in the presence of calcium oxide and calcium nitrate
according to the literature procedure.12 A solution of equimolar
N,N�-diamino-1,4-diazoniabicyclo[2.2.2]octane dinitrate and
chalcone in a mixture of isopropanol and benzene (2 : 1, v/v)
was added portionwise to sodium hydride over 30 min while
stirring at room temperature. Chalcone was converted to
aziridine in a yield of 63%. After the ratio of N,N�-diamino-
1,4-diazoniabicyclo[2.2.2]octane dinitrate and chalcone was
increased to 2 : 1 and the reaction was carried out at 0 �C, the
aziridinated product was obtained in 95% yield (Scheme 1). A

variety of chalcone derivatives were also aziridinated in high
yields following the same procedure except for nitro substituted
chalcones (15–17%, Table 1 entries 12 and 13). For aziridin-
ation of aliphatic α,β-unsaturated ketones (but-3-en-2-one
and cyclohex-2-en-1-one) with N,N�-diamino-1,4-diazonia-
bicyclo[2.2.2]octane dinitrate, no aziridination products were
isolated. Although 4-phenylbut-3-en-2-one did not give the
desired aziridine product in this aziridination, 1-arylbut-2-en-1-
ones [1-phenylbut-2-en-1-one and 1-(4-methoxyphenyl)but-2-
en-1-one] were aziridinated in almost quantitative yields.
The results are summarized in Table 1.11,13,14 A comparison of
the coupling constants of their methine protons with those
reported in the literature 10b,15 demonstrates that the aziridines
have a trans-configuration.

Attempts to aziridinate electron-rich olefins, styrene and
allylbenzene, with N,N�-diamino-1,4-diazoniabicyclo[2.2.2]-
octane dinitrate were unsuccessful indicating that this azirid-
ination process is not a nitrene addition to an alkene, but a
nitrogen ylide addition to an α,β-unsaturated ketone. It is
assumed that N,N�-diamino-1,4-diazoniabicyclo[2.2.2]octane
dinitrate could convert into a diamine imide after reaction with
sodium hydride. The diamine imide undergoes Michael
addition to the α,β-unsaturated ketone followed by cyclization

Scheme 1
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Table 1 Direct aziridination of α,β-unsaturated ketones with N,N�-diamino-1,4-diazoniabicyclo[2.2.2]octane dinitrate

Aziridine R Substituent on Ar group Yield (%) Mp/�C (lit.)

1 Ph H 95 100–101 (99–101 11)
2 Ph 4-Cl 79 76–78 (75–8 11)
3 2-ClPh H 88 92–94 (92.5–4.5 11)
4 4-MeOPh H 84 53–54
5 Ph 4-MeO 82 71–72 (71–2 13)
6 4-ClPh H 79 88–89 (88.5 13)
7 Ph 4-Br 81 102–104 (98–104 13)
8 Ph 4-Me 89 89–90 (89–90 13)
9 4-BrPh H 76 110–111 (111–2 13)

10 4-MePh H 87 106–107 (105–6 13)
11 2-MeOPh H 91 104–105 (104–5 13)
12 2-NO2Ph H 17 113–115 (113–5 13)
13 4-NO2Ph H 15 142–143 (142.5 13)
14 Me H 99 oil 14

15 Me 4-MeO 99 59–60

Scheme 2

to form an aziridine after departure of the good leaving-
group tertiary amine, 1,4-diazabicyclo[2.2.2]octane (Scheme 2).
The diamine imide can also decompose into 1,4-diaza-
bicyclo[2.2.2]octane, which is a competitive reaction with
aziridination, and is why excess hydrazinium nitrate is needed
in the reaction. Scheme 2 shows both of the imide moieties in
N,N�-diamino-1,4-diazoniabicyclo[2.2.2]octane dinitrate parti-
cipating in aziridination reactions. However, sometimes just one
imide reacts. In the aziridination reactions in most cases
Michael addition could be the rate-determining step. However,
for the nitro substituted chalcones, ring-closure is possibly
disadvantageous because the carbanion could be stabilized by
a strong electron-withdrawing group, the nitro group. Thus, the
yields of the corresponding aziridines are low.

Two other hydrazinium salts, 1,1,1-triethylhydrazinium
nitrate, an acyclic hydrazinium salt, and 1-aminopyridinium
nitrate, an aromatic hydrazinium salt, were also prepared and
were tested for aziridination. Aziridination of chalcone with
1,1,1-triethylhydrazinium nitrate gave a very low yield (12%).
It might be assumed that the 1,1,1-triethylammonium imide
anion attached to the nitrogen of triethylamine is more
sterically hindered than those attached to the nitrogens of 1,4-
diazabicyclo[2.2.2]octane. No desired aziridine was found in
the reaction of 1-aminopyridinium nitrate with chalcone. This
could be ascribed to the aromaticity of pyridine. After reaction
with sodium hydride, the pyridinium N-imide anion is very
unstable and is prone to forming stable aromatic pyridine by
loss of imide. In competitive reactions, pyridinium N-imide
decomposes faster than the Michael addition occurs.

In order to extend this aziridination, attempts to aziridinate
α,β-unsaturated esters (ethyl cinnamate and ethyl acrylate)
and α,β-unsaturated N,N-disubstituted amides (N,N-dimethyl-
cinnamamide and N,N-dimethylacrylamide) with N,N�-di-
amino-1,4-diazoniabicyclo[2.2.2]octane dinitrate failed.

In conclusion, N,N�-diamino-1,4-diazoniabicyclo[2.2.2]-
octane dinitrate is an efficient reagent for the conversion of 1-
aryl-α,β-unsaturated ketones to their N-unsubstituted aziridine
derivatives.

Experimental
Melting points were measured on a Yanaco MP-500 melting
point apparatus and are uncorrected. 1H NMR spectra were
recorded on a Varian Mercury 200 (200 MHz) spectrometer in
CDCl3 with tetramethylsilane (TMS) as an internal standard.
Mass spectra were obtained on a VG-ZAB-HS mass spec-
trometer. CHN analyses were recorded on an Elementar Vario
EL analyzer. IR spectra were taken on a Bruker Vector 22
FT-IR spectrophotometer using KBr pellets.

Caution: Hydrazinium salts should be considered potential
chemical hazards 16 and extreme care must be exercised in
working with them. However no problems were encountered
during our studies. N,N�-Diamino-1,4-diazoniabicyclo[2.2.2]-
octane dinitrate was prepared according to the literature pro-
cedure and was reported stable, but highly energetic.12 The
known aziridine derivatives gave satisfactory data as reported in
the literature.11,13,14

General aziridination procedure

N,N�-Diamino-1,4-diazoniabicyclo[2.2.2]octane dinitrate (268
mg, 1.0 mmol) and α,β-unsaturated ketone (104 mg, 0.5 mmol)
were dissolved in 9 mL of a mixture of anhydrous isopropanol
and benzene (2 : 1, v/v). NaH (30 mg, 95%, ∼1.0 mmol) was
added portionwise over 30 min with stirring at 0 �C. The
mixture was stirred overnight. Water was added to the reaction
mixture. After extracting with benzene, the organic layer was
washed with water and brine and dried over sodium sulfate.
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After removal of the solvent, the residue was recrystallized
from methanol or separated on a silica gel column with
hexane : AcOEt (10 : 1) as an eluent to give colorless crystals
except for yellow nitro substituted aziridines.

2-Benzoyl-3-(4-methoxyphenyl)aziridine 4. Colorless crystals,
yield 84%; 1H NMR (CDCl3, 300 MHz) δ 8.02–7.23 (9H, m,
ArH), 3.47 (dd, 1H, J = 2.4, 8.1 Hz, CH), 3.14 (dd, 1H, J = 2.4,
9.6 Hz, CH), 2.66 (dd, 1H, J = 8.1, 9.6 Hz, NH); IR (KBr)
ν/cm�1 3264 (N–H), 1667 (C��O); MS (m/z) 253 (M�, 41), 238
(M� � Me, 100), 105 (PhCO, 75). Anal. calcd for C16H15NO2

(253.30) C, 75.87; H, 5.97; N, 5.53. Found C, 75.60; H, 6.04; N,
5.61%.

2-(4-Methoxybenzoyl)-3-methylaziridine 15. Colorless
crystals, yield 99%; 1H NMR (CDCl3, 300 MHz) δ 8.01 (d, 2H,
J = 9.3 Hz, ArH), 6.99 (d, 2H, J = 9.3 Hz, ArH), 3.90 (s, 3H,
MeO), 3.18 (d, 1H, J = 2.5 Hz, CH), 2.19 (m, 1H, CH), 2.10
(br s, 1H, NH), 1.35 (d, 3H, J = 5.2 Hz, Me); IR (KBr) ν/cm�1

3209 (N–H), 1653 (C��O); MS (m/z): 191 (M�, 33), 176 (M� �
Me, 100), 135 (MeOPhCO, 78). Anal. calcd for C11H13NO2

(191.23) C, 69.09; H, 6.85; N, 7.32. Found C, 69.30; H, 6.60;
N, 7.37%.
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